Skip to navigation Skip to content
Sara Solomon on 12/05/2016

Thermal Management Solutions: 5 Keys to Thermal Dissipation Using Thermal Interface Material

Minute Read

Table Of Contents

    Nolato Compatherm.jpegElectronic components produce heat when they operate. How these products manage their heat generating and cooling systems determines how functional and reliable they are. Thermal dissipation greatly contributes to the performance and longevity of various products, especially electronic devices.

    Since electronics generate power, fluctuations in temperatures can occur. When temperatures get too high, there needs to be a way to wick the heat away from the components to a heat dissipating mechanism, such as a liquid cooling plate, chassis or traditional heat sink. For instance, if a Printed Circuit Board (PCB) does not have a way to transfer heat, the reliability and longevity of its components will be adversely affected. In extreme cases they can even melt or become damaged. Thermal Interface Materials (TIMs) are used to transfer heat away from the heat source and onwards in the cooling chain.

    Thermal Management Material

    Read Our Essential Guide to Thermal Management Materials Because Heat Transfer is so Vital for Creating Superior Products

    Selecting the appropriate form and thermal conductivity of TIM is key to achieving optimal cooling in today's high performance electronic enclosures. TIM solutions may be dispensed via automated equipment directly onto one of the surfaces as a paste, or be supplied as fully cured, pre-cut pads. The dispensed version is especially effective for intricate designs and can greatly reduce costs and lead times, but does require the purchase of dispensing equipment and programming.

    The pliability or softness of thermal materials can drastically cut thermal resistance and greatly enhance cooling by filling the gaps and small irregularities inevitably present between flat surfaces. T hermal interface materials are purposely made to conduct heat, usually by adding conductive gap filler to soft silicone to increase heat transfer. As a result, TIMs offer at least two orders of magnitude better thermal conductivity than the pockets of still air which would otherwise fill these irregularities.

    Dispensed thermal interface material offer the following features:

    • Available in cartridges 
    • Easily conforms to uneven and rough surfaces
    • Thermal conductivity range 2-5 W/(mK)
    • Low contact resistance
    • Soft – high deflection at low pressure

    Die cut thermal pads offer the following features:

    • Available in pre-cut custom die-cut parts or sheets (converted or unconverted)
    • Highly conformable to uneven and rough surfaces
    • Thermal conductivity range 1 – 12 W/(mK)
    • Thickness range 0.25 – 5 mm
    • Soft – high deflection at low pressure

    Five fundamentals of effective thermal dissipation are as follows:

    5 Keys to Thermal Dissipation

    Image: Five fundamentals of effective thermal dissipation

    1. Thermal Conductivity

    The rate at which heat passes through a material is its thermal conductivity. We typically talk about the conductivity of thermal management material in terms of the unit "Watts per meter Kelvin". This is expressed as W/(m • K).

    TIMs are specifically designed to transfer heat while exhibiting a compression force characteristic that accommodates both the component that is creating the heat as well as the chassis or heat sink being used to dissipate the heat.

    Thermal conductivity can be measured using equipment such as the Hot Disk 500S. This instrument uses a sensor that applies a constant power and simultaneously measures the temperature of the probe.

    modus resource center

    2. Hardness

    Material hardness is measured using a Durometer that determines the resistance of a material to indentation.

    5 Keys to Thermal Dissipation

    Image: Relative Durometer Scale


    Compression force has a relation to material hardness. It is preferable to choose a TIM with a low compression force requirement so electronic components are not damaged. Increasing the compression force effectively reduces thermal resistance. Have you ever gripped the handle of a warm kitchen pan? The tighter you grip the handle, the more heat you feel on your hand. Relaxing your grip on the handle increases thermal resistance, thus transferring less heat from the handle to your hand.

    Another example of compression force can also be shown through the common heat sink that is used on the tab of a semiconductor device, such as a TO-220 package. For the TO-220 package, the metal tab on the package is compressed to the metal heat sink through torque using a nut tightened on a bolt. In situations that require the tab to be isolated, a TIM and nonconductive bolt are used. The amount of area that is compressed; the maximum force, which is speed dependent; and the relaxation of material (applied force is reduced over time) are considerations when determining compression variables.

    Compression force considerations:

    • Amount of area that is compressed (example 1x1 cm, 2x2 cm)
    • Maximum force (dependent on speed)
    • Relaxation of material (applied force is reduced over time)

    There is not always a linear relation between hardness and compression force. Compression is a more important parameter in thermal conductivity applications. Note that compression force versus deflection is dependent on the sample thickness.


    Click here to download our Compatherm product portfolio


    3. Dielectric Requirement

    Dielectric breakdown voltage is the electric potential where a non-conducting material becomes conductive. Dielectric testing consists of placing electrodes on both sides of a TIM and applying an increasing amount of voltage until a current begins to flow.

    • Common test equipment measures up to 10 kV
    • Normally, the TIM should be electrically isolating, but dielectric breakdown voltage depends on the application
    • We typically talk about the conductivity of TIMs in terms of Watts per Meter Kelvin [W/(mK)]. Dielectric breakdown voltage is typically between 1kV/mm and 20kV/mm. A dielectric breakdown less than 8kV/mm is usually adequate for most applications.

    4. Thermal Resistance

    The thermal conductivity of a material is not affected by the thickness of the product. However, the overall thermal resistance of a product is affected by the TIM thickness.

    The resistance is a function of the material's high thermal conductivity, the contact area, and the TIM thickness, added to the contact resistances, which in turn are a function of how well the thermal interface materials conform to and wets the surfaces it attaches to. It is therefore best to have the shortest distance between the heat source and heat radiator, while having the TIM cover the maximum area of the heat source.

    It is also important to maintain low enough thermal interface resistance to keep the component temperature below the threshold temperature.

    5. Size

    Thermal pads are typically cut to the dimensions of the product package that requires heat sinking. By making the pad as large as the package, maximum surface area is achieved, thus creating the lowest possible thermal interface resistance in terms of the package plane. The typical die cut pad thickness ranges are usually between 0.25-5 mm.

    Although great gains are being made to reduce the amount of heat that is produced by electronics, effective heat dissipation is still vital to a product's success. Therefore, it is important to consider material composition, high thermal conductivity, hardness, dielectric requirement, thermal resistance, and size when selecting a thermal interface material. These attributes will enhance your thermal dissipation efforts by seamlessly becoming part of the cooling chain. Choosing the appropriate TIM will also ultimately create efficient and reliable products with less product returns and potential additional costs.

    Modus Advanced, Inc . is proud to stock and fabricate Nolato's Compatherm® product line . Compatherm® pad materials are typically cut into custom shapes by Modus, while dispensed Compatherm® gap filler materials are applied on the customer's production line. Modus stocks the full line of materials and can provide cartridges, cut pieces and kit prices based on your unique application. Ideal for applications requiring heat transfer from a PCB to a heat sink, these ultra soft and pliable materials can drastically cut thermal resistance and greatly enhance cooling by filling air gaps and small irregularities.

    New call-to-action

    Submit a design